If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.4t^2-62t=0
a = 2.4; b = -62; c = 0;
Δ = b2-4ac
Δ = -622-4·2.4·0
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-62}{2*2.4}=\frac{0}{4.8} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+62}{2*2.4}=\frac{124}{4.8} =25+1/1.2 $
| 12x-15=392x+3) | | ¼x=17 | | -2.8=x/3 | | 9+6(x+2)=2(3x+7)+5 | | 56=1/3+d | | 1x+2+3x+4=4x+2 | | (5x+15)=20(2) | | 6/4=3/n-5 | | 3(w-10)=-9 | | 4q−15=1 | | 2r-14=20 | | 3a-6+2a-2=22 | | 12x+3=11x+1 | | (3x-5)/7=3x-4 | | (5x+15)=40 | | 7c=7c+2 | | 8+4x=11+3x | | 3(1-4k)=75 | | k+17=92 | | -5v+30=-5(v+6) | | 5p=78 | | 12(x-7)=#7-5 | | -80=5(-2x04) | | 2(4-6x)=92 | | p+58=12 | | -8y=- | | 26=37-y | | 3.3z=4.1z+10.5 | | 7x+2=2x+2-9 | | -3(y+10)=9 | | k-33=37 | | x*17.50=250 |